Data Science Hierarchy of Needs

From Upstream (root initiatives) to Downstream (consequent initiatives)

1. collect

1.1. instrumentation

1.2. logging

1.3. sensors

1.4. external data

1.5. user generated content

2. move/store

2.1. reliable data flow

2.3. pipelines

2.4. ETL

3. explore/transform

3.1. cleaning

3.3. prepprocessing/preparation

4. aggregate/label

4.1. Analytics

4.2. Metrics

4.3. Segments

4.4. Aggregates

4.5. Features

4.6. Training data

5. learn/optimize

5.2. Experimentation

5.3. simpler ML algorithms

5.4. AI

Tags:none